Systems with a massive number of processors generally take one of two paths: in one approach, e.g. in grid computing the processing power of a large number of computers in distributed, diverse administrative domains, is opportunistically used whenever a computer is available.[4] In another approach, a large number of processors are used in close proximity to each other, e.g. in a computer cluster. The use of multi-core processors combined with centralization is an emerging direction. Currently, Japan's K computer (a cluster) is the fastest in the world.
Supercomputers are used for highly calculation-intensive tasks such as problems including quantum physics, weather forecasting, climate research, oil and gas exploration, molecular modeling (computing the structures and properties of chemical compounds, biological macromolecules, polymers, and crystals), and physical simulations (such as simulation of airplanes in wind tunnels, simulation of the detonation of nuclear weapons, and research into nuclear fusion).
History
Cray left CDC in 1972 to form his own company.[11] Four years after leaving CDC, Cray delivered the 80 MHz Cray 1 in 1976, and it become one of the most successful supercomputers in history. The Cray-2 released in 1985 was an 8 processor liquid cooled computer and Fluorinert was pumped through it as it operated. It performed at 1.9 gigaflops and was the world's fastest until 1990.[14]
While the supercomputers of the 1980s used only a few processors, in the 1990s, machines with thousands of processors began to appear both in the United States and in Japan, setting new computational performance records. Fujitsu's Numerical Wind Tunnel supercomputer used 166 vector processors to gain the top spot in 1994 with a peak speed of 1.7 gigaflops per processor.The Hitachi SR2201 obtained a peak performance of 600 gigaflops in 1996 by using 2048 processors connected via a fast three dimensional crossbar network.The Intel Paragon could have 1000 to 4000 Intel i860 processors in various configurations, and was ranked the fastest in the world in 1993. The Paragon was a MIMD machine which connected processors via a high speed two dimensional mesh, allowing processes to execute on separate nodes; communicating via the Message Passing Interface.
Hardware and architecture
While the supercomputers of the 1970s used only a few processors, in the 1990s, machines with thousands of processors began to appear and by the end of the 20th century, massively parallel supercomputers with tens of thousands of "off-the-shelf" processors were the norm. Supercomputers of the 21st century can use over 100,000 processors (some being graphic units) connected by fast connections.
Throughout the decades, the management of heat density has remained a key issue for most centralized supercomputers.The large amount of heat generated by a system may also have other effects, e.g. reducing the lifetime of other system components.There have been diverse approaches to heat management, from pumping Fluorinert through the system, to a hybrid liquid-air cooling system or air cooling with normal air conditioning temperatures.
As the price/performance of general purpose graphic processors (GPGPUs) has improved, a number of petaflop supercomputers such as Tianhe-I and Nebulae have started to rely on them. However, other systems such as the K computer continue to use conventional processors such as SPARC-based designs and the overall applicability of GPGPUs in general purpose high performance computing applications has been the subject of debate, in that while a GPGPU maybe tuned to score well on specific benchmarks its overall applicability to everyday algorithms may be limited unless significant effort is spent to tune the application towards it. However, GPUs are gaining ground and in 2012 the Jaguar supercomputer was transformed into Titan by replacing CPUs with GPUs.
A number of "special-purpose" systems have been designed, dedicated to a single problem. This allows the use of specially programmed FPGA chips or even custom VLSI chips, allowing higher price/performance ratios by sacrificing generality. Examples of special-purpose supercomputers include Belle, Deep Blue, and Hydra, for playing chess, Gravity Pipe for astrophysics, MDGRAPE-3 for protein structure computation molecular dynamics and Deep Crack, for breaking the DES cipher.
Energy usage and heat management
See also: Computer cooling and Green 500
A typical supercomputer consumes large amounts of electrical power, almost all of which is converted into heat, requiring cooling. For example, Tianhe-1A consumes 4.04 Megawatts of electricity. The cost to power and cool the system can be significant, e.g. 4MW at $0.10/KWh is $400 an hour or about $3.5 million per year.The packing of thousands of processors together inevitably generates significant amounts of heat density that need to be dealt with. The Cray 2 was liquid cooled, and used a Fluorinert "cooling waterfall" which was forced through the modules under pressure. However, the submerged liquid cooling approach was not practical for the multi-cabinet systems based on off-the-shelf processors, and in System X a special cooling system that combined air conditioning with liquid cooling was developed in conjunction with the Liebert company.
In the Blue Gene system IBM deliberately used low power processors to deal with heat density. On the other hand, the IBM Power 775, released in 2011, has closely packed elements that require water cooling. The IBM Aquasar system, on the other hand uses hot water cooling to achieve energy efficiency, the water being used to heat buildings as well.
The energy efficiency of computer systems is generally measured in terms of "FLOPS per Watt". In 2008 IBM's Roadrunner operated at 376 MFLOPS/Watt. In November 2010, the Blue Gene/Q reached 1684 MFLOPS/Watt. In June 2011 the top 2 spots on the Green 500 list were occupied by Blue Gene machines in New York (one achieving 2097 MFLOPS/W) with the DEGIMA cluster in Nagasaki placing third with 1375 MFLOPS/W.
Software and system management
Operating systems
Given that modern massively parallel supercomputers typically separate computations from other services by using multiple types of nodes, they usually run different operating systems on different nodes, e.g. using a small and efficient lightweight kernel such as CNK or CNL on compute nodes, but a larger system such as a Linux-derivative on server and I/O nodes.
While in a traditional multi-user computer system job scheduling is in effect a tasking problem for processing and peripheral resources, in a massively parallel system, the job management system needs to manage the allocation of both computational and communication resources, as well as gracefully dealing with inevitable hardware failures when tens of thousands of processors are present.
Although most modern supercomputers use the Linux operating system, each manufacturer has made its own specific changes to the Linux-derivative they use, and no industry standard exists, partly due to the fact that the differences in hardware architectures require changes to optimize the operating system to each hardware design.
Software tools
See also: Parallel computing and Parallel programming model
The parallel architectures of supercomputers often dictate the use of special programming techniques to exploit their speed.In the most common scenario, environments such as PVM and MPI for loosely connected clusters and OpenMP for tightly coordinated shared memory machines are used. Significant effort is required to optimize an algorithm for the interconnect characteristics of the machine it will be run on; the aim is to prevent any of the CPUs from wasting time waiting on data from other nodes. GPGPUs have hundreds of processor cores and are programmed using programming models such as CUDA.
Software tools for distributed processing include standard APIs such as MPI and PVM, VTL, and open source-based software solutions such as Beowulf.
Distributed supercomputing
Opportunistic approaches
The fastest grid computing system, Folding@home, which is based on BOINC, reported 8.8 petaflops of processing power as of May 2011[update]. Of this, 7.1 petaflops are contributed by clients running on various GPUs, 1.8 petaflops come from PlayStation 3 systems, and the rest from various computer systems.
The BOINC platform hosts a number of distributed computing projects. As of May 2011[update], BOINC recorded a processing power of over 5.5 petaflops through over 480,000 active computers on the network The most active project (measured by computational power), MilkyWay@home, reports processing power of over 700 teraflops through over 33,000 active computers.
As of May 2011[update], GIMPS's distributed Mersenne Prime search currently achieves about 60 teraflops through over 25,000 registered computers. The Internet PrimeNet Server supports GIMPS's grid computing approach, one of the earliest and most successful grid computing projects, since 1997.
Quasi-opportunistic approaches
Main article: Quasi-opportunistic supercomputing
Quasi-opportunistic Supercomputing is a form of distributed computing whereby the ?super virtual computer? of a large number of networked geographically disperse computers performs huge processing power demanding computing tasks. Quasi-opportunistic supercomputing aims to provide a higher quality of service than opportunistic grid computing by achieving more control over the assignment of tasks to distributed resources and the use of intelligence about the availability and reliability of individual systems within the supercomputing network. However, quasi-opportunistic distributed execution of demanding parallel computing software in grids should be achieved through implementation of grid-wise allocation agreements, co-allocation subsystems, communication topology-aware allocation mechanisms, fault tolerant message passing libraries and data pre-conditioning.Performance measurement
Capability vs capacity
Supercomputers generally aim for the maximum in capability computing rather than capacity computing. Capability computing is typically thought of as using the maximum computing power to solve a single large problem in the shortest amount of time. Often a capability system is able to solve a problem of a size or complexity that no other computer can, e.g. a very complex weather simulation application.Capacity computing in contrast is typically thought of as using efficient cost-effective computing power to solve a small number of somewhat large problems or a large number of small problems, e.g. many user access requests to a database or a web site. Architectures that lend themselves to supporting many users for routine everyday tasks may have a lot of capacity but are not typically considered supercomputers, given that they do not solve a single very complex problem.
Performance metrics
No single number can reflect the overall performance of a computer system, yet the goal of the Linpack benchmark is to approximate how fast the computer solves numerical problems and it is widely used in the industry. The FLOPS measurement is either quoted based on the theoretical floating point performance of a processor (derived from manufacturer's processor specifications and shown as "Rpeak" in the TOP500 lists) which is generally unachievable when running real workloads, or the achievable throughput, derived from the LINPACK benchmarks and shown as "Rmax" in the TOP500 list. The LINPACK benchmark typically performs LU decomposition of a large matrix. The LINPACK performance gives some indication of performance for some real-world problems, but does not necessarily match the processing requirements of many other supercomputer workloads, which for example may require more memory bandwidth, or may require better integer computing performance, or may need a high performance I/O system to achieve high levels of performance.
The TOP500 list
This is a recent list of the computers which appeared at the top of the Top500 list, and the "Peak speed" is given as the "Rmax" rating. For more historical data see History of supercomputing.
Year | Supercomputer | Peak speed (Rmax) | Location |
---|---|---|---|
2008 | IBM Roadrunner | 1.026 PFLOPS | New Mexico, USA |
1.105 PFLOPS | |||
2009 | Cray Jaguar | 1.759 PFLOPS | Oak Ridge, USA |
2010 | Tianhe-IA | 2.566 PFLOPS | Tianjin, China |
2011 | Fujitsu K computer | 10.51 PFLOPS | Kobe, Japan |
Applications of supercomputers
The stages of supercomputer application may be summarized in the following table:Decade | Uses and computer involved |
---|---|
1970s | Weather forecasting, aerodynamic research (Cray-1). |
1980s | Probabilistic analysis, radiation shielding modeling (CDC Cyber). |
1990s | Brute force code breaking (EFF DES cracker), 3D nuclear test simulations as a substitute for legal conduct Nuclear Proliferation Treaty (ASCI Q). |
2010s | Molecular Dynamics Simulation (Tianhe-1A) |
Modern-day weather forecasting also relies on supercomputers. The National Oceanic and Atmospheric Administration uses supercomputers to crunch hundreds of millions of observations to help make weather forecasts more accurate.
In 2011, the challenges and difficulties in pushing the envelope in supercomputing were underscored by IBM's abandonment of the Blue Waters petascale project.
Research and development trends
Given the current speed of progress, supercomputers are projected to reach 1 exaflops (1018) (one quintillion FLOPS) in 2019. Using the Intel MIC multi-core processor architecture, which is Intel's response to GPU systems, SGI plans to achieve a 500 times increase in performance by 2018 to achieve an exaflop. Samples of MIC chips with 32 cores which combine vector processing units with standard CPU have become available.
On October 11, 2011, the Oak Ridge National Laboratory announced they were building a 20 petaflop supercomputer, named Titan, which will become operational in 2012, the hybrid Titan system will combine AMD Opteron processors with Nvidia GeForce 600 "Kepler" graphic processing unit (GPU) technologies. At about the same time Fujitsu announced that the 20 peta flop follow up system for the K computer, called the PRIMEHPC FX10 will use the same 6 dimensional torus interconnect, but still only one SPARC processor per node.
Erik P. DeBenedictis of Sandia National Laboratories theorizes that a zettaflops (1021) (one sextillion FLOPS) computer is required to accomplish full weather modeling, which could cover a two week time span accurately.[83] Such systems might be built around 2030.
The Indian government has committed about $940 million to develop the world's fastest supercomputer by 2017. The Planning Commission of India has agreed to provide the funds to ISRO and to the Indian Institute of Science (IISc), Bangalore to develop a supercomputer with a performance of 132.8 exaflops, about 1,000 times faster than the 2012 fastest computers.
reff : http://ruditeng.blogspot.com/2012/03/supercomputer.html
EmoticonEmoticon